青海脂质体载药包裹药物

时间:2024年06月29日 来源:

载药脂质体在体内的行为主要受囊泡的吸收、分布和消除等各种药动学参数的影响。此外,这可能通过避免药物泄漏来提高脂质体的稳定性,并增加脂质体在体内的滞留。就药物的全身可用性而言,脂质体的位点特异性或靶向递送可能更有利。使用靶向递送,与其他组织中的药物浓度相比,可以在特定部位获得大量药物。靶组织可获得的脂质体包裹药物的量和速度决定了药物的**终生物利用度。 由此决定了药物的发作、持续时间和程度作用取决于药物从靶部位(组织)脂质体释放的速度和程度。主动药物装载⽅法,也称为远程药物装载⽅法,涉及在空脂质体产⽣后装载药物制剂。青海脂质体载药包裹药物

青海脂质体载药包裹药物,脂质体载药

与Myocet细胞类似,Marqibo也有三瓶装在⼀个包装中。空脂质体内⽔相为柠檬酸缓冲液(0.3M,pH值约4.0)。在装填硫酸⻓春新碱(pKa=5.4)之前,通过添加浓度为14.2mg/mL的磷酸钠缓冲液,将脂质体的外部pH提⾼到pH7.0-7.5左右。与Myocet细胞和Marqibo不同,DaunoXome采⽤低pH梯度(柠檬酸,50mM),导致柔红霉素负荷相对较弱,药物半衰期短,AUC低。相反,⾼跨膜pH梯度(如脂质体内pH2.0)可增加脂质体的药物包封率和抗**功效。然⽽,低pH值会诱导脂质(如磷脂酰胆碱)的酸⽔解,进⼀步诱发脂质体的药物泄漏和稳定性问题。Onivyde使⽤⼀种新型聚阴离⼦盐,即蔗糖三⼄基铵盐(TEA-SOS),在脂质体膜上产⽣电化学梯度。⼀个聚阴离⼦盐分⼦可以结合8个伊⽴替康分⼦。⾸先在TEA-SOS溶液中制备脂质体。交换脂外poso-后将空脂质体与盐酸伊⽴替康溶液在pH为6.5的条件下孵育。包封在脂质体内部的伊⽴替康以⼋硫代蔗糖盐的形式呈现凝胶或沉淀状态。可获得95%以上的⾼包封效率。青海脂质体载药包裹药物PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。

青海脂质体载药包裹药物,脂质体载药

脂质体靶向递送中RGD配体修饰尽管阳离子脂质体具有在体内递送核酸的潜力,但其递送到特定靶点仍然是一个主要挑战。为了增强携带核酸的阳离子脂质体在靶组织中的分布,研究人员用多肽和小分子修饰了脂质体表面。例如,研究了Arg-Gly-Asp(RGD)肽修饰的脂质体增强核酸向整合素受体表达细胞传递的能力。负载P糖蛋白特异性siRNA的RGD修饰阳离子脂质体对整合素受体表达的人乳腺*MCF7/A细胞的递送率更高,导致P糖蛋白的***沉默。与此一致的是,分子成像显示,与小鼠模型的邻近正常组织相比,MCF7/A**组织中RGD修饰的阳离子脂质体和siRNA的分布更高。在**近的一项研究中,用环RGD和辛精氨酸修饰脂质体表面,以利用环RGD的整合素受体结合效应和辛精氨酸的细胞穿透效应。双配体修饰的阳离子脂质体增加了整合素avb3表达细胞的细胞摄取,并且更有效地转染荧光素酶编码质粒DNA。

阴离子脂体由带负电荷的脂质组成,如磷脂酰甘油、磷脂酰丝氨酸和磷脂酸,由于它们被巨噬细胞摄取,循环时间缩短。带负电的小脂质体比其对应的中性和带正电的脂质体被***得更快。此外,在带负电荷的小脂质体中观察到一种双相***模式。 另一方面, 与中性和带正电的脂质体相比, 血液单核细胞和肺在带负电的大脂质体的摄取中起主要作用。表面修饰的脂质体(携带配体)比天然脂质体更容易被***。 然而, 脂质体通过掺入胆固醇可在一定程度上减少肝脏对脂质体的摄取, 这可能会使磷脂包装转变为更坚硬有序的膜。Zeta电位被认为是影响细胞摄取和药物传递的重要因素之一。

青海脂质体载药包裹药物,脂质体载药

脂质体制备方法:破碎技术尺⼨和尺⼨分布是脂质体性能和安全性的关键属性。有⼏种⽅法可⽤于减少脂质体的尺⼨,如(超)超声(通过浴或探针),挤压,均质,或组合⽅法,如冻融挤压,冻融超声和⾼压均质挤压技术。在这些技术中,挤压和⾼压均质(HPH)是在制药制造中**常⽤的技术。⼤尺⼨的脂质体通过聚碳酸酯膜(50nm~5µm)成为粒径分布精细的较⼩的脂质体。众所周知,商业化的纳⽶脂质体产品,包括Onivyde、Vyxeos、Marqibo等,都是采⽤这种⽅法进⾏⽣产的。该⽅法相对简单,重现性好,只需要适中的条件。尺⼨减⼩的潜在机制是MLV在膜孔⼊⼝处破裂,并在膜通过过程中重新排列。关键的⼯艺参数,如聚碳酸酯膜的孔径、通过循环次数、压⼒和流速等,都可以影响脂质体的⼤⼩和⽚层性。Ong等⼈发现,在⽐较其他不同的纳⽶化技术(包括冻融超声、超声和均质化)时,挤出是***的技术。然⽽,挤压可能会降低脂质体的包封性并改变不对称脂质体的结构。HPH⽤于⽣产各种纳⽶制剂,如脂质体、纳⽶晶体和纳⽶乳液。它既适⽤于⽔体系,也适⽤于⾮⽔体系,并提供不同的⽣产规模,从容量为10L/h的实验室规模到容量为10万L/h的⼤型⽣产规模。脂质体的靶向释放对吸收、分布和消除等各种药动学参数的影响。青海脂质体载药包裹药物

相变温度对脂质体的影响。青海脂质体载药包裹药物

固体脂质纳米颗粒和纳米结构脂质载体虽然脂质体作为药物载体是有用的,但它们需要使用有机溶剂的复杂生产方法,在包裹药物方面表现出低效率,并且难以大规模执行。固体脂质纳米颗粒(SLN)和纳米结构脂质载体(NLC)的开发是为了解决这些缺点。传统的脂质体由液晶脂质双层组成,而SLN由固体脂质组成,和NLC由固体和液晶脂质混合物组成。SLN和NLC的粒径在40~1000nm之间。SLN和NLC表现出增强的物理稳定性,解决了脂质体基础配方的主要限制之一。SLN和NLC还具有更高的装载能力和更高的生物利用度,不需要使用有机溶剂就可以大规模生产,并且比其他LNPs更稳定。此外,分子在固体状态下迁移率的降低使得SLN和NLC能够更精确地控制其药物有效载荷的释放。然而,在长期储存中,SLN的结晶可以将掺入的药物排出到周围介质中青海脂质体载药包裹药物

信息来源于互联网 本站不为信息真实性负责